MEASUREMENT UNCERTAINTIES

Science is based on experimental measurements. Measurements can support theoretical ideas, or
measurements can point to imperfect theories. However, if a measurement is going to tell us
anything about some scientific theory, we have to know "how good" the experimental
measurement is. No experiment can produce an exact answer—all experimental measurements
have some uncertainty. Scientists must have an honest means of describing the sureness of their
data if that data is going to give anything beyond a qualitative account of some event.

Suppose we want to measure the length of a piece of paper with a ruler. In order to make that
measurement, we have to accurately line up the zero mark at one end of the paper. We have to
have the ruler parallel to the edge of the paper. We have to be able to estimate where the other end
of the paper hits the ruler. We can't do any of those things perfectly.

The smallest division on a ruler is a millimeter. It's hard to imagine that you could measure
something with a ruler any more accurately than a few tenths of a millimeter. A scientist has to
make an honest judgment about the accuracy of the measurement process, so we might say that a
good estimate of our uncertainty in measuring with a ruler is (under the best conditions) 0.3 mm.
The length of this piece of paper might then be reported as

L=77.1£03 mm.

The absolute uncertainty in this measurement is +0.3 mm. In stating that, we are claiming that
due to the imperfectness of the measuring process, the actual length could be anywhere between
76.8 mm and 77.4 mm .

Sometimes the absolute uncertainty is not the most helpful measurement of the uncertainty of a
measurement. Sometimes it is more useful to have a relative uncertainty. What percent of the
measured value is the absolute uncertainty? So, for this measurement of a piece of paper, the
relative uncertainty is

0.3 mm
77.1 mm

x100% = 0.4%.

We could report the uncertainty of the measurement as

L=77.1mm=0.4% .

Significant Figures

Even without explicitly listing the uncertainty, you describe something about the preciseness of
measurements by the way you write the numbers. A length of "2.0 m" implies that the length is
closer to 2.0 m than it is to 1.9 m or 2.1 m, whereas "2 m" implies that the length is closer to 2 m
than it is to 1 m or 3 m. The first measurement is more precise, and that has been conveyed by the
number of digits used in writing the number. The digits used to indicate this precision are called
significant digits or significant figures. So a length of "2.0 m" has two significant figures, while
the length of "2 m" has only one. Of the two examples given above, the first had two significant
figures, and the second had one.
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Not all the digits written in a number are necessarily "significant." Those zeroes that only locate
the decimal point are not significant. A measurement reported as "0.00020 m" has only two
significant digits. The three zeroes after the decimal point are not significant. However, a
measurement of "1.00020 m" would have six significant digits. Thinking about it in terms of
scientific notation clarifies the difference between these two cases. The one measurement would

be "2.0x10™* m", while the second would still be "1.00020 m".

Similarly, there is an ambiguity about a measurement like "2000 m". It is not clear how many of
those digits are significant! Writing large numbers in scientific notation allows us to determine
how many of those zeroes are significant. If the measurement is written as "2.0x10°> m", then we
can see that there are only two significant digits.

Do not confuse significant figures and precision with the largeness or smallness of a number. The
number 0.02 s is small, but not precise, since it only has one significant figure. If the experiment

warrants it, you should be sure to keep the appropriate significant figures, so the number might be
0.0253 s.

Comparisons

You will frequently need to compare your measured values (or a number calculated from your
measured value) to some other value. Examples of this would be to compare the measured value
to (a) a theoretical value (b) a value obtained by a different measurement technique or (c) some
"accepted" value.

In real experimental measurements, the comparisons (a) and (b) are the most frequent. In the
elementary lab, you do encounter a number of situations in which there is some reference or
accepted value. This is really just a comparison with some other measurement that has been done
much more precisely than yours. If we measure the acceleration due to gravity in the lab, there is
an accepted value to compare to because it has been measured many times with great precision.

Your experimental result will not match perfectly with whatever you're comparing it to. The
question we're always interested in is do they agree within the uncertainty of the measurements?

For example, if we measure the acceleration due to gravity as 9.74+0.09 m/s* , we didn't get the
same exact number as the accepted value of 9.81 m/s*. However, given our stated uncertainty,

the actual result of our measurement could be anywhere between 9.65 m/s* and 9.83 m/s’.

Since this range includes the accepted value, the measurement does agree with the expected result
within the uncertainty of the measurement.

Estimating Measurement Uncertainty

How do you determine the uncertainty of your measurement? On what factors is it based? The
uncertainty is a combination of two things: the limiting precision of your measuring instrument
and the limitations of the experiment (including the experimenter).

In our initial example of measuring a piece of paper, we have already seen how the limited
precision of a ruler produces some uncertainty in any measurement. A ruler might have a precision
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no better than a few tenths of a millimeter, a scale might read masses only to the nearest tenth of a
gram, or a timing mechanism might be accurate to a millisecond. Each of these instruments sets a
fundamental limit on how reliably a quantity can be measured. A ruler gives a small uncertainty
when measuring the length of a piece of paper, but for the thickness of a piece of paper, a ruler will
not do. Some instrument with much smaller uncertainties is required—Ilike a micrometer.

In most real cases, your uncertainty may be greater than that due to the instrument. Imagine using
a meter stick to measure the length of a table. You probably will not be able to measure the length
with an uncertainty of only a few tenths of a millimeter. The ends of the table may be rounded, or
the table may not be square. All of this must be considered when getting a realistic estimate of the
uncertainty. So how do you make this realistic estimate?

(1) Do consider the fundamental limitations of the measuring device.

(2) Beyond that, observe the difficulties you have in making the measurement. You are part of the
measuring technique. If there is some difficulty in reading an instrument or in manipulating the
apparatus, then this should be taken into account when you estimate how good a measurement is.
This "human error" should be included from the beginning in your estimates of measurement
uncertainty. It is not acceptable to invoke "human error" after the fact as a vague catch-all for why
your experiment did not yield the expected results.

(3) When possible, repeat the measurement. The average of many measurements is a better value
to use for the measured quantity, and the variation in those measurements can give you a really
good idea of how uncertain your measurement is. Formally, one could use the standard deviation
as a measure of uncertainty, but in an elementary lab, we can get a good estimate of the uncertainty
by making a reasonable guess based on the observed distribution of measurements.

Why You Might Still Be Wrong

There are two other problems with experimental measurements that don't show up in uncertainty
estimates. If these problems exist in your experiment, you can wind up with a measurement not
agreeing with the expected result within uncertainty.

Maybe you screwed up. I'm not talking about being imperfect in positioning a meter stick here. I
mean maybe you bumped the scale when it took a reading, misread the voltmeter, wrote down the
wrong number, or performed a calculation incorrectly. If you catch it, you can fix the problem or
repeat the experiment. If not, you wind up with a measured value that is really just wrong, and you
don't know why.

A more insidious problem is the systematic error. Maybe your clock runs slow, your scale isn't
correctly zeroed, or there's friction that you haven't included in the analysis. All of these problems
would cause you to get experimental results that were systematically wrong. All your time
measurements would run long or all you masses would be too big. Taking a bunch of
measurement isn't going to help—their average will also be wrong! Again, if the systematic error
goes unnoticed, the results of an experiment can disagree with the accepted or expected results, and
you don't know why.




Propagation of Uncertainties

In general, you're not just going to measure the length of a piece of paper and compare it to the
"expected" length of the paper. You're going to use that length in calculating some other quantity.
How does the uncertainty in the paper's length translate to an uncertainty in that other quantity?
Determining how the uncertainty of one measurement contributes to the uncertainty of another
quantity is called propagation of uncertainties.

Suppose we have two measured quantities with their absolute uncertainties: 99+3 m and
21+£1 m. We could instead write these quantities to show their relative uncertainties: 99 m+3%

and 21 m+5%. There are many types of calculations we might want to do with one or both of
those measurements. The most basic ones are described below.

Multiplication by a constant.

Suppose we need to multiply the first measurement by two. When multiplying a quantity by a
constant factor, its absolute uncertainty is also multiplied by that factor. Its relative uncertainty is
unchanged.

In this example, the result of this calculation would be 198+ 6 mor 198 m+3% .

(Note that dividing is equivalent to multiplying by the reciprocal.)

Raising to a power.

Suppose we need to square the first measurement. When raising a quantity to some power, the
easiest approach is to use the relative uncertainty. The relative uncertainty is multiplied by the
power.

In this example, the power is two since we're squaring the measurement. So the result of this
calculation would be 9800 m £ 6% .

(Note that things like square roots follow this same rule, since taking the square root is equivalent
to raising to the 2 power.)

Addition or subtraction of two measured quantities.

Suppose we want to add or subtract the two measurements we have made. The easiest approach is
to use the absolute uncertainty. In either case, the absolute uncertainty of the new result is the sum
of the absolute uncertainties of the original measurements. Yes, even if you're subtracting the
quantities.

In this example, adding our two measurements would lead to 120+4 m, and subtracting them
would lead to 78 +4 m.

People are often unhappy with the fact that the uncertainties add when you're subtracting the
quantities. But think about it. Suppose you started with two measurements with equal
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uncertainties. Should you be able to subtract those measurements and end up with zero
uncertainty? Of course not—you've still got to add those uncertainties.

Multiplication or division of two measured quantities.
Suppose we want to multiply or divide the two measurements we have made. The easiest

approach is to use the relative uncertainty. In either case, the relative uncertainty of the new result
is the sum of the relative uncertainties of the original measurements.

In this example, multiplying our two measurements would lead to 2080 m* 8%, and dividing
them would lead to 4.7 +8%.

Realistic example of propagating uncertainties.

Suppose you are determining the change in kinetic energy of a moving object (due to the action of
a force acting on it.) You measure the object to have a mass of m =0.158+0.003 kg . It begins

with a velocity of v, =5.9+0.2 m/s and ends with a velocity of v, =2.4+0.1 m/s. By how
much has its kinetic energy changed, and what is the uncertainty in that result?

The first part of the question is easy. Since the kinetic energy of a moving object is given by

K =1mv?, the change in kinetic energy is found from AK :%m(v_f, —vl.z) =-2.3J. But what is

the uncertainty?

The calculation process has involved squaring velocities, subtracting those squared velocities,
multiplying by the mass, and multiplying by a constant. Since we must first square the velocities,
we'll need relative uncertainties to make that job easier. Writing the velocities with their relative
uncertainties yields

v, =59m/s+3.4% and v, =2.4m/s+4.2% .
Squaring a quantity means we double its relative uncertainty, so the velocities squared are written
V2 =34.81m*/s* £6.8% and v} =5.76m’/s* £8.4% .

We now want to subtract these two results, so we'll need to know their absolute uncertainties to do
that.

V) =34.81+2.37 m’/s’ and v} =5.76+0.48 m’/s’.
Subtracting these results means we should add their absolute uncertainties.

vi—v?=-29.05+2.85 m?/s* .
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To multiply by 4 m, it would be easiest to switch back to relative uncertainties:



Vi —v =-29.05m"/s* £9.8% and m=0.158 kg+1.9% .

The final result is then AK =1m(v} —vl.z) =-23J+12%.  Switching back to absolute

uncertainties would give us AK =-2.3+0.37J.

In reporting final results like these, I've used an appropriate number of digits in writing the
uncertainty. It wouldn't make sense to use £11.7% or +0.269 J. After all, is our uncertainty that
certain? No way.



